SRI VENKATESWARA COLLEGE OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING (UG) ASSESMENT TEST – 1SCHEDULE (APR/MAY - 2023)

DATE: 13.03.2023

DATE OF EXAM	III- YEAR (VI SEM) REGULATION 2017	IV- YEAR (VI SEM) REGULATION 2017	LAST DATE OF MARK SUBMISSION
14.03.2023	EE8601 – Solid State Drives	EE8015 – Electrical Energy Generation Utilization and Conservation	22.03.2023
15.03.2023	EE8602 – Protection Switch Gear	EE8019 – Smart Grid	22.03.2023
16.03.2023	EE8691 – Embedded Systems	-	22.03.2023
17.03.2023	EE8005 – Special Electrical Machines	<u>-</u>	22.03.2023

M. Pur -

Jan #3 | 3 | 2 3

PRINCIPALIS'
PRINCIPAL

Sri Venkateswara College of Engineering and Technology, Thirupachur, Thiruvallur - 631 283

SRI VENKATESWARA COLLEGE OF ENGINEERING AND TECHNOLOGY

Department of Electrical & Electronics Engineering

ASSESMENT 1

Year/sem: III/VI

Time: 9AM to 12 PM

Date: 20-03-2023

Sub code / Title: EE8005 / Special Electrical Machines

b. Explain in detail, linear analysis of stepper motor.

Max marks: 50

COI	motors.	of synchronous reluctance	
CO2	Ability to acquire the knowledge on construction, operation and control of stepper motors.		
		PP	
	PART – A	(7*2-14)	
	PARI – A	(7*2=14)	

	Answer the an question	
1.	What is the difference between potential and potential difference?	CO2
2.	List the applications of synchronous reluctance motors.	CO1
3.	Examine the principle of operation Synchronous reluctance Motor.	CO1
4.	Give the voltage and torque equation of synchronous reluctance motor.	CO1
5.	Justify whether skewing is necessary for synchronous reluctance motor.	CO1
6.	Define step angle.	CO2
7.	Define slewing.	CO2
	PART - B (12*2=26)	
8.	a. (i) Give a detailed technical note on the variable reluctance motor and the advantages. (7)(ii) Investigate the performance of the synchronous reluctance motor with neat phasor diagram	CO1 am. (6) CO1
	(OR)	COI
	b. (i) Draw and explain the phasor diagram of synchronous reluctance motor. (3) (ii) Explain the construction and operation of axial and radial flux machines. Discuss the	CO1
	advantages and disadvantages of each construction. (10)	CO1
9.	a. Differentiate between axial and radial air gap synchronous reluctance motors. Compare the	
	performance of synchronous reluctance motor with switched reluctance motor. (13) (OR)	CO2
	b. Describe in detail the construction and working of variable reluctance stepper motor. (13)	CO2
	PART - C (10*1=10)	
10.	a. Explain the various stator current modes in a synchronous reluctance motor in detail (Or)	CO2

PRINCIPAL

Sri Venkateswara College of Engineering and Technology, Thiruvallur - 631 203

CO1